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Abstract
We study the properties of high temperature superconductors (HTSs) in the states of mixed
symmetry with coexisting d- and s-wave order parameter components. We model the mixed
symmetry states of the HTSs in the framework of two-order-parameter Ginzburg–Landau (GL)
theory. We solve the coupled nonlinear GL equations using a high precision exact numerical
iteration technique for the entire range of applied magnetic field, arbitrary GL parameter κ and
vortex lattice symmetry. We study theoretically and compare with experiments several
properties of HTSs, such as local spatial behaviors of the magnetic field and order parameter
profiles, vortex core radius, penetration depth of the magnetic field, structure of the vortex
lattice, reversible magnetization, upper critical field Hc2 and shear modulus of the vortex lattice,
and their variations with temperature and applied magnetic field. The excellent agreement
between theoretical and experimental results on HTSs shows that the mixed symmetry scenario
is a good candidate for the description of the HTSs.

1. Introduction

A major topic of interest and discussion in high-Tc cuprate su-
perconductors is the pairing symmetry of the superconducting
order parameter, which appears to be a crucial step in the iden-
tification of the pairing mechanism and in the subsequent de-
velopment of a microscopic theory for the high-Tc supercon-
ductors. There is growing evidence that the symmetry of the
order parameter in high-Tc cuprate superconductors is differ-
ent from the low-Tc superconductors, most of which have s-
wave pairing symmetry. For high-Tc cuprate superconductors
there is strong experimental evidence that the spin pairing is
singlet [1], thereby suggesting an s-wave or d-wave pairing
state. But in strongly correlated electron systems, the s chan-
nel can be blocked by the strong on-site Coulomb repulsion,
leaving open the possibility of a higher-angular-momentum d-
wave pairing state. Several experiments have been interpreted
for the possibility of a d-wave symmetry, i.e. the dx2−y2 pair-
ing state with lines of nodes in the energy gap. Experiments
which directly probe the pairing symmetry by using phase sen-
sitive devices such as Josephson junctions and superconduct-
ing quantum interference devices (SQUIDs) have supported
the possibility of a d-wave pairing symmetry [2–5]. Similarly,

the observed polarization dependence of the Raman scatter-
ing experiments has been accounted for by a dx2−y2 pairing
state [6]. However, many of the inconsistencies in these ex-
perimental results can be interpreted by allowing for states of a
mixture of s- and d-wave symmetric order parameters. The ori-
gin of the mixed phase consisting of both s and d components
has been explained as due to the introduction of a small or-
thorhombic distortion in the CuO2 plane resulting from the ex-
istence of the CuO chains [7]. The mixing of the s- and d-waves
due to the orthorhombic distortion results in the anisotropy of
the gap between the x and y directions [8]. Such anisotropy
has been observed in the Raman scattering experiments of
YBa2Cu4O8 [9] and YBa2Cu3O7 [10] and more recently in
the photo-emission spectra from YBa2Cu3O7−δ [11]. Simi-
larly, there are several experiments, which, even though they
are consistent with predominantly dx2−y2 pairing symmetry,
do not rule out a mixture of s-wave component, like the field
modulated critical current measurement experiment to obtain
the pairing state symmetry of YBa2Cu3O7−δ [12], momentum
resolved temperature dependence of the superconducting gap
of Bi2Sr2CaCu2O8+x [13], observation of Josephson super-
currents along the c direction in YBCO–Pb superconductor–
insulator–superconductor tunnel junctions [14], thermal
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conductivity measurements of YBa2Cu3O7−δ detwinned sin-
gle crystal [15] etc. Most recent angle-resolved electron tun-
neling experiments of Smilde et al [16] also show the forma-
tion of states of mixed symmetry, where the major bulk pairing
mechanism is d wave in nature with a sub-dominant admixture
of s-wave pairing. For other experiments which are compati-
ble with the mixed symmetry states of d and s waves with the
former being the dominant component, we refer to the review
article [17].

The mixed symmetry scenario has been suggested as the
origin of many experimentally observed unusual effects in
HTSs, such as the unusual upward curvature of the plot of
thermodynamic Hc2 versus temperature [18], the pseudo-gap
effects in HTSs [19], nonmagnetic impurity effects in HTSs
leading to an energy gap [20] and superconducting fluctuation
effects in HTS [21]. Recent small angle neutron scattering
(SANS) and scanning tunneling microscopy experiments on
high Tc superconductors YBCO [22] have shown anomalous
magnetic field dependence of the vortex lattice structure. It
has been proposed that this effect can arise from including two
or more order parameters (such as s and d) in the Ginzburg–
Landau (GL) free energy, with derivative mixing terms
reflecting the ionic lattice symmetry [23]. Similarly, a two-
component order parameter theory has been used to describe
the observed anomalous properties of the heavy fermion
superconductor UPt3 [24]. In the case of heavy fermion
metal UPt3, measurements of the low temperature ultrasonic
attenuation, specific heat, nuclear spin relaxation and thermal
conductivity all show qualitatively different behavior from that
predicted by the BCS theory for a conventional superconductor
(for review see Fisk et al [25]).

The study of the single vortex and vortex lattice structure
of a superconductor is very important for determining
the transport property and pairing symmetry of the order
parameter. Studying the symmetry properties of the core of d-
wave superconductors, Volovik [26] concluded the existence of
mixed d- and s-wave pairing in high-Tc superconductors. Ren
et al [27] derived microscopically the GL equations of HTSs
with d-wave symmetry and studied the structure of the single
vortex by solving the corresponding GL equations. Similarly,
Soininen et al [28] calculated the vortex structure numerically
within the framework of the self-consistent Bogoliubov–de
Gennes theory and identified a region where d- and s-waves
coexist. Xu et al [29], Heeb et al [30], Franz et al [31], Ichioka
et al [32] and Mel’nikov et al [33] studied numerically the
structure of the single vortex and vortex lattice employing a
two-component (s- and d-wave) GL theory and found that an
s-wave component of the order parameter is always induced
with a fourfold structure and the vortex lattice has oblique
structure. Similar numerical studies by Li et al showed that
the structure of the single vortex in the d + is state exhibits
twofold symmetry [34].

One of the major limitations of the above mentioned
studies of single vortex and vortex lattice structure in the
framework of GL theory is that these are restricted to the
applied magnetic fields near the upper and lower critical fields,
H ≈ Hc2 and H → Hc1, for the vortex lattice and isolated
vortices, respectively. These studies are basically limited

to solving approximately the coupled two-order-parameter
(s- and d-wave) nonlinear GL equations by linearizing the
equations [31]. However, experimental studies of small angle
neutron scattering (SANS) and scanning tunneling microscopy
on high Tc superconductor YBCO have shown the intermediate
magnetic field region Hc1 � H � Hc2 to be the most
relevant as it has anomalous magnetic field dependence of the
vortex lattice structure [22, 35]. In the intermediate field region
Hc1 � H � Hc2, the nonlinear GL equations cannot be
linearized and it is very difficult to solve the coupled two-order-
parameter nonlinear GL equations. Yet another limitation of
these studies of isolated vortex and vortex lattice structure
of high Tc superconductors in mixed symmetry state is the
use of an ansatz for the form of the s-wave symmetry order
parameter, thereby reducing the coupled two-order-parameter
problem to an approximate effective single-order-parameter
model [23, 33].

In this paper we study theoretically the properties of high
temperature superconductors in states of mixed symmetry.
In particular we are interested in studying the effects of the
presence of an additional s-wave order parameter and its
coupling with the d-wave order parameter on the vortex states
of the HTS. We study in detail the local spatial behavior,
the width and peak amplitude of the order parameters and
the magnetic field induction, the structure of the single
vortex and the vortex lattice and their variations with the
parameter representing the gradient coupling between the order
parameters. The changes in these local spatial behaviors
have a direct reflection on the experimentally observable
characteristic properties of the superconductors, such as the
vortex core radius, penetration depth of the magnetic field,
upper critical applied field Hc2, reversible magnetization and
the shear modulus of the vortex lattice. We model the HTS
in states of mixed symmetry in the framework of two-order-
parameter GL theory. Since we are interested in studying
the properties of the high Tc superconductors in the entire
range of the applied field, we do not linearize the coupled
nonlinear GL equations. We also do not use any ansatz for
the form of the s-wave order parameter components. Thus,
we solve the fully nonlinear coupled two-order-parameter GL
equations for the entire range of the applied magnetic field for
arbitrary values of the GL parameter (κ) and vortex lattice
symmetry. We have studied the effect of the additional
order parameter on single vortex and vortex lattice structure,
width and amplitude of the order parameters and magnetic
induction and their variations with applied magnetic field
and the coupling parameter representing the strength of the
gradient coupling between the order parameters. We present,
for the first time, theoretical calculations and comparison with
experiments on various properties of HTSs in states of mixed
symmetry, such as coherence length and penetration depth,
reversible magnetization, upper critical magnetic field Hc2,
shear modulus of the vortex lattice and their variations with
temperature and applied magnetic field. These properties are
a signature of the superconducting phase. The agreement
between the theoretical and experimental results is shown to
be excellent.

The paper is organized as follows. Section 2 describes
the theoretical formalism. In section 3 we give the details of
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the analytical and numerical calculations of various properties
of HTSs in states of mixed symmetry, discussions and
comparison of the analytical results with available experiments
on high-Tc superconducting materials. Finally, in section 4 we
conclude with suggestions for future work.

2. Theoretical formalism

The two-dimensional average GL free energy density of the
high Tc superconductors involving mixed symmetry states can
be expressed in terms of the two order parameters of s(r)-wave
and d(r)-wave symmetry as [23, 31]

f = 〈 αs|s|2 + αd|d|2 + β1|s|4 + β2|d|4
+ β3|s|2|d|2 + β4(s

∗2d2 + d∗2s2)+ γs|Πs|2
+ γd|Πd|2 + γv[(�ys)∗(�yd)− (�x s)∗(�x d)

+ c.c] + B2/8π〉 (1)

where Π = −i∇ − e∗A
h̄c , αs = α(T − Ts), αd = α(T − Td)

with (Ts < Td) and 〈· · ·〉 = 1
V

∫
dr · · · denotes the spatial

average. Here, we take the two-dimensional spatial average
of the free energy to obtain the free energy density. The GL
equations are obtained by minimizing the free energy density.
B = Bẑ = ∇ × A is the local field. H and B̄ = 〈B(x, y)〉
are along z. β1, β2, β3, β4, γs, γd and γv are all positive
quantities. The parameters γ are related to the effective mass,
with γi = h̄2/2m∗

i , for i = s, d, v.
The choice of the parameters considered in our study is

determined by the condition of stability of the pure d-wave
state in the bulk in the absence of perturbations, i.e. when
|d| > 0, s = 0. The condition for such a state to be
thermodynamically stable is given by [28, 31]

αd < 0, 2β2αs + (β3 − 2|β4|)|αd| > 0. (2)

In the absence of the parameter εv the pure d-wave state is
stable against admixture of s-wave through the β3 and β4 terms
(as shown from linear stability analysis [30]). Thus, the β3 and
β4 terms are not relevant to generate the s-wave component.
Therefore, the mixed gradient term, which is proportional to
the parameter εv, is crucial for our problem, and this term gives
the maximum contribution to the effects of s-wave mixing. For
example, the experimentally observed oblique vortex lattice is
reproduced analytically from our calculations only for nonzero
values of the parameter εv, while for εv = 0 the triangular
vortex lattice is realized as in the case of the pure d-wave
solution.

We write the order parameters as s = √
ωs exp[iφs],

d = √
ωd exp[iφd] with ωs = |s|2 � 1, ωd = |d|2 �

1 and introduce a gauge invariant real quantity Q(x, y) =
A(x, y) − ∇φ(x, y)/κ . The supervelocity −Q(x, y) denotes
the gauge invariant velocity of the superconducting electrons.
It is related to the current density as j = −Qω, where ω(x, y)
is the density of the superconducting electrons. The word
‘supervelocity’ was coined by Abrikosov [36] because of the
similarity between the spatial variations of the magnitude of
Q (i.e. Q → 0 for r → ∞ and Q → 1/κr for r → 0) and
the superfluid velocity vs in helium II. The corresponding three
GL equations obtained by minimizing the free energy density,

using the variational technique δ f /δωi = 0 (i = s, d) and
δ f /δQ = 0, can be written as

∇2ωs + 2κ2[−αsωs − 2β1ωs
2 − (β3 + 2β4 cos(2φ))ωsωd

− gs − ωs Q2 − εv{cos(φ)(Q2
y − Q2

x)(ωsωd)
1/2

+ (ωs/ωd)
1/2[cos(φ){(∇2

x − ∇2
y)ωd/2κ

2 + gdy − gdx}
+ 2 sin(φ)(Qx∇x − Qy∇y)ωd/2κ]}] = 0 (3)

∇2ωd + 2κ2[ωd − 2β2ωd
2 − (β3 + 2β4 cos(2φ))ωsωd

− gd − ωd Q2 − εv{cos(φ)(Q2
y − Q2

x )(ωsωd)
1/2

+ (ωd/ωs)
1/2[cos(φ){(∇2

x − ∇2
y)ωs/2κ

2 + gsy − gsx}
+ 2 sin(φ)(Qy∇y − Qx∇x)ωs/2κ]}] = 0 (4)

∇2Q − (ωs + ωd)Q − εv[2 cos(φ)(ωsωd)
1/2(ŷQy − x̂Qx)

+ sin(φ){(ωd/4κ
2ωs)

1/2(∇y − ∇x)ωs

− (ωs/4κ
2ωd)

1/2(∇y − ∇x)ωd}] = 0 (5)

where εv = γv/γd, φ = φd − φs is the phase difference and
gi = (∇ωi)

2/4κ2ωi , gi j = (∇ jωi )
2/4κ2ωi for i = s, d,

j = x, y.
We solve the fully nonlinear two-order-parameter GL

equations for the entire range of the applied field and
for arbitrary values of the GL parameter κ and vortex
lattice symmetry using a high precision numerical iterative
method [37]. The method basically consist of expressing the
order parameters and the magnetic induction as Fourier series.
The Fourier coefficients are then determined numerically
by iterating the three iterative equations for the Fourier
coefficients obtained from the three nonlinear GL equations
for the two order parameters and the magnetic induction. Two
additional iterative equations for the Fourier coefficients are set
up to make the iteration process faster and more stable. These
additional two equations are obtained from the minimization
conditions of the free energy w.r.t. the amplitudes of the order
parameters. This iterative method produces numerically exact
solutions of the fully nonlinear GL equations valid for the
entire range of the applied magnetic field Hc1 < H < Hc2

for arbitrary value of Ginzburg–Landau parameter and vortex
lattice symmetry [37].

3. Numerical calculations, results and discussions

The solutions of the coupled nonlinear GL equations involving
two order parameters and the magnetic field are computed
numerically using the iterative method as discussed above.
We compute various properties of HTSs and their variations
with temperature and the applied magnetic field (parameter
b = B̄/Bc2). In particular, we compute the variations with the
coupling parameter εv, which represents the gradient coupling
between the order parameters, to examine the effects of the
existence of an additional order parameter on the properties of
the system.

3.1. Single vortex and vortex lattice structure

We denote the vortex positions in the vortex lattice as R =
Rmn = (mx1 + nx2, ny2) (m, n integer). For the triangular
lattice, one has x2 = x1/2, y2 = x1

√
3/2, and for the square

lattice x2 = 0, y2 = x1. We first determine the structure
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Figure 1. Variation of Abrikosov parameter βA with lattice
symmetry parameter y2. Parameter values used are αs/|αd| = 0.5,
β1/2β2 = β3/2β2 = 1.0, β4/2β2 = 0.5, εv = 0.4, phase difference
φ = (φd − φs) = π/2, κ = 72 and magnetic induction b = 0.8.

of the vortex lattice of HTSs in states of mixed symmetry.
This can be done by determining the dependence of the free
energy f (x2 = x1/2, y2) on y2 and finding the value of
y2 which minimizes the free energy. An easier alternative
approach to obtain the same information is to find the value
of y2 which minimizes the Abrikosov parameter (see [31]).
The Abrikosov parameter is defined as βA = 〈ω2

s 〉/〈ωs〉2.
Figure 1 shows the variation of the Abrikosov parameter with
y2 for a particular value the coupling parameter εv (εv =
γv/γd), the coefficient of mixed gradient coupling terms. We
have taken the value of the GL parameter κ = 72 which is
obtained from the experiments on YBCO [35]. For εv = 0.4,
βA is minimum for y2 = 0.71 (we take x1 = 1). The
vortex lattice is thus oblique. This is in agreement with the
experimentally observed oblique vortex lattice structure of
YBCO [22].

Changing the value of the coupling parameter εv results
in a change in the value of y2 for which βA is minimum.
For εv = 0.1, 0.2, 0.3, 0.4 and 0.5, βA is minimum at y2 =
0.44, 0.48, 0.55, 0.71 and 0.74, respectively. The overall
structure of the vortex lattice remains oblique.

Figure 2 shows the contour plots for the order parameter
components ωs(x, y) and ωd(x, y) for three different values of
the coupling parameter εv. It can be seen that the variation in
the value of parameter εv results in variation in the structure of
the vortex lattice, though the lattice remains in general oblique.

The ωs(x, y) profile shows a fourfold structure, while the
amplitude ofωd(x, y) shows a nearly elliptic structure. Change
in the εv value produces maximum change in the magnitude
of ωs(x, y) and the qualitative structure of the d-wave order
parameter component remains almost the same. These
results are in agreement with the experimental observations
of the fourfold symmetric structure of the order parameter
component, indicating the presence of more than one order
parameter component [2, 5, 16] in HTSs. Figure 3 shows the
magnetic field distribution B(x, y) for various values of the
coupling parameter εv. Again, the lattice shows an oblique
structure.

3.2. Local spatial behavior of the order parameters and the
magnetic field

A major advantage of our numerical method over the earlier
approximate studies is that it is possible to obtain the local
spatial behaviors of the magnetic field and superconducting
order parameter components such as the widths of the order
parameters and the magnetic induction and their variation
over the entire range of the applied magnetic field. The
magnetic field dependence of the penetration depth is in
general nonlinear. It has been suggested by Amin et al [38]
that in the case of high Tc superconducting materials in states
of mixed symmetry nonlinear and nonlocal effects are required
to be considered, which affects the spatial distribution of
the magnetic field component in the vortex lattice, specially
at higher magnetic field inductions. Earlier calculations are
only limited near upper or lower critical applied fields and
the corresponding GL theories were treated in the linear
limit; accordingly, it is not possible to see the nonlinear
effects. We solve however the fully nonlinear GL equations.
These local spatial behaviors are responsible for some of the
experimentally observed properties of high Tc materials such
as penetration depth, vortex core radius etc.

Figure 2. Contour plots of order parameter components. The parameter values are αs/|αd| = 0.5, β1/2β2 = β3/2β2 = 1.0, β4/2β2 = 0.5,
φ = π/2, κ = 72, magnetic induction parameter b = 0.7. (a)–(c) s-wave order parameter component ωs(x, y) for εv = 0.1, 0.3 and 0.4,
respectively; (d)–(f) plots for the d-wave order parameter component ωd(x, y) for εv = 0.1, 0.3, 0.4, respectively.
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Figure 3. Contour plots for magnetic field component B(x, y). Parameter values are the same as in figure 2.

Figure 4. Spatial variation of the order parameter component
ωd(x, 0) along the x direction for different magnetic induction
parameters b and coupling parameter εv = 0.1. Other parameters are
the same as in figure 2.

3.2.1. Order parameters. The spatial variation of the d-wave
order parameter ωd(x, 0) along a particular direction (x axis)
for different values of the applied field is shown in figure 4. For
b → 0, ω → 1, which, as expected, is the isolated vortex limit.
It can be seen from the figure that with increase of applied field
the width of the order parameter (FWHM) decreases. This
implies that the vortex core radius decreases with increasing
field. This is in agreement with experiments on HTSs [39].
We discuss the vortex core radius further below. The s-wave
order parameter also shows similar behavior. Figure 5 shows
the variation of the peak amplitude of the order parameters
ωd(x, 0) and ωs(x, 0) with applied field for various values of
the coupling parameter εv. The s-wave component amplitude
slightly increases with increase of the coupling parameter
while that of the d-wave component decreases, but the overall
amplitude of the s-wave component remains very small as
compared to that of the d-wave component.

We now compare some of the results obtained from our
analytical study of the two-order-parameter GL model with
available experiments on HTSs. We first discuss the vortex
core radius. It is well known that in a superconducting material
the order parameter is strongly suppressed in the vicinity of
the vortex core. This suppression of the superconducting
electron density is not sharp and varies over a distance termed
the coherence length, whose measure is comparable to the
vortex core radius or size. Several attempts have been made
to determine the vortex structure at arbitrary temperature,
magnetic field and impurity concentration. Efforts were

Figure 5. Variation of peak amplitude of the order parameter
components ωd(x, 0) and ωs(x, 0) with magnetic induction b for
different values of the coupling parameter εv. Other parameters are
the same as in figure 2.

made to numerically solve the quasi-classical Eilenberger
equations [40], which are a reformulation of the microscopic
Gor’kov theory [41]. Kramer [42] determined the local
structure of a vortex near Hc1 by numerically solving the
Usadel equations [43], and have found that with decreasing
temperature the pair potential �(r), i.e the order parameter,
rises more steeply and the magnetic field decays more rapidly
as a function of distance from the center of the vortex.

We compare the magnetic field dependence of the vortex
core radius r0(b) as obtained from our calculations with
experimentally determined values of the vortex core size of
HTSs YBa2Cu3O6.95 [39]. For calculating the vortex core
radius we have used the commonly used definition of vortex
core size which comes from GL theory, where the core radius
is defined as the FWHM of the calculated spatial dependence of
the superconducting order parameter [44]. In figure 6, we have
plotted the variation of the vortex core radius with the magnetic

5
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Figure 6. Variation of the vortex core radius with magnetic field.
The inset shows the experimental data of the same for
YBa2Cu3O6.95 [39]. Parameter values used for the theoretical model
are εv = 0.1 and the other parameters are the same as in figure 2.

field as obtained from our two-order-parameter GL model. The
vortex core radius decreases with increasing magnetic field.
This is in agreement with the experimentally observed behavior
(shown in the inset of the figure) of the variation of the vortex
core radius with the applied field in YBa2Cu3O6.95 [39]. We
have also calculated the variation of the widths of the order
parameter profiles with temperature in the mixed symmetry
state of the HTSs. The widths so calculated give information
about the coherence lengths of the system. To see the effects
of the presence of two order parameter components and their
couplings, we compute the temperature dependence of the
widths of the order parameter profiles for different values of
the coupling parameter εv. This is shown in figure 7.

It can be seen that the behavior remains qualitatively the
same for different values of εv, but the magnitude of the widths
increases with εv, indicating a broader vortex core at higher
εv for all temperatures. Figure 8 shows the comparison of
the variation of the vortex core radius with temperature as
obtained from our analytic calculations with experimental data
for the HTS YBa2Cu3O6.95 [44]. The agreement between the
analytical vortex core radius as computed from the two-order-
parameter GL model and experimental results is very good.
The vortex core radius decreases with decrease of temperature.
We would like to mention here that the GL theory calculations
become less accurate for temperatures far away from Tc as
there are higher order terms which must be included in the
GL free energy. Recently, Lipavský et al [45] proposed a
method of extending the GL theory so as to make it applicable
to all temperatures. It will be thus interesting to generalize this
method for the two-order-parameter GL theory as considered
here.

3.2.2. Magnetic field. We have studied the local spatial
profile of the magnetic field induction for the two-order-
parameter GL model of HTS. We have calculated the width of
the magnetic field profile and studied the effect of the coupling
parameter εv on the width. For a given value of εv, the width of
the magnetic field profile depends on the magnetic induction
parameter b. However, the shape of the curves remains
qualitatively the same for different values of κ . The width of

Figure 7. Widths of the order parameter profiles plotted against
temperature for different values of the coupling parameter εv. The
upper panel shows the variation of width of the d-wave order
parameter component profile ωd(x, 0) with temperature T/Td. The
lower panel shows the variation of the width of the s-wave order
parameter component profile ωs(x, 0) with temperature T/Ts.
Parameter values are the same as in figure 2 and b = 0.01.

Figure 8. Temperature dependence of the vortex core radius. The
solid line gives the theoretical result while the solid dots gives the
experimental data for YBa2Cu3O6.95 [44]. The parameter values used
for the theoretical calculation are the same as in figure 2 with
b = 0.004 and εv = 0.8.

the profiles are plotted along a particular direction in the x–y
plane, which we chose along the x axis. We define the width
of the profile as the FWHM of the amplitude of the magnetic
field profile. The widths so defined approximately give the
characteristic length of the systems, i.e. the penetration depth.
Figure 9 shows the variation of the width of the B(x, 0) with
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Figure 9. Variation of width of magnetic field profile B(x, 0) with b
for different values of coupling parameter εv. Other parameters are
the same as in figure 2.

Figure 10. The maximum magnetic field Bmax (upper solid lines)
occurring at the vortex centers for the oblique vortex lattice
compared with the applied magnetic field H (lower dashed lines) in
the units of Hc2, plotted against magnetic induction b = B̄/Bc2 for
GL parameter κ = 1.0, 1.5, 2.0, 3.0, 5.0, 7.0. The other parameters
used are the same as in figure 2, and εv = 0.1.

coupling parameter εv. It can be seen that the width of the
magnetic field profile increases with parameter εv.

We have also calculated the maximum Bmax, the minimum
Bmin and the saddle point Bsad fields over the entire range of the
applied magnetic field for various values of the GL parameter
κ . These quantities are important for comparison with the
muon spin rotation experiments of the high Tc materials [46].
Figure 10 shows the plot of the variation of Bmax and applied
magnetic field H with b. It can be see that the maximum
magnetic field Bmax, at the center of the vortex, always exceeds
the applied magnetic field H . The minimum magnetic field
Bmin however lies below the average magnetic field B̄ , as
shown in figure 11.

We now calculate the temperature dependence of
penetration depth of the magnetic field and its variation with
the coupling parameter εv. We also calculate the variation
of the penetration depth with temperature and compare with
experiment on HTSs. The penetration depth is defined as
the distance over which the magnetic field profile varies in
the superconductor. Experiments carried out on high Tc

materials have suggested that the temperature dependence of

Figure 11. The minimum magnetic field Bmin for the oblique vortex
lattice is compared with the average magnetic induction B̄ (dashed
line with dots) in the units of Hc2, plotted versus b for GL parameter
κ = 1.0, 1.5, 2.0, 3.0, 5.0, 7.0. Other parameters are the same as in
figure 2 and εv = 0.1.

Figure 12. Variation of inverse square width of the magnetic field
profile B(x, 0) with temperature T/Td for different values of the
coupling parameter εv. Other parameters are the same as in figure 2
and b = 0.01.

the penetration depth is not linear and these observations have
been attributed to the presence of nodes in the superconducting
energy gap, which accounts for the sensitivity of the physical
properties of these materials to impurities and crystalline
defects. Amin et al [38] suggested that such a response of
the magnetic penetration depth to temperature arises due to
the influence of nonlinear and nonlocal effects on the vortex
state of high Tc materials with mixed symmetry states. The
influence of nonlocal effects is greater at higher magnetic field
where the vortex density is greater and there is greater overlap
of the regions in the vicinity of the vortex cores modified
by the nonlocal effects. Thus, the linear T dependence of
the penetration depth can be observed only at temperature
above the energy scale of nonlinear and nonlocal effects. The
variation of the inverse square of width of the magnetic field
B(x, 0) along the x-axis with temperature is as shown in
figure 12. The width is defined as the FWHM of the field
B(x, 0), and it gives a measure of the penetration depth. It can
be seen that the width increases with increase in temperature
and the dependence is not linear. For a given temperature,
the width increases with increase in the coupling parameter
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Figure 13. Variation of the ratio λ2(0)/λ2(T ) with temperature
T/Td. The solid line gives the theoretical result while the open
circles gives the experimental data for YBa2Cu3O6.95 [47]. The
parameter values used for the theoretical calculations are the same as
in figure 2; b = 0.004 and εv = 0.1.

εv. To compare with experiment we calculate the variation of
the penetration depth λ(T ) with temperature. Figure 13 shows
the temperature (T/Td) dependence of the ratio (λ2(0)/λ2(T )).
The penetration depth λ(T ) as computed using our two-order-
component GL theory is compared with the corresponding
experimental data extracted from the �λ(T ) measurement
of YBa2Cu3O6.95 crystal [47]. The agreement between the
computed penetration depth using the two-order-parameter GL
theory and the experiment is excellent.

3.3. Reversible magnetization

Yet another property of superconductors which can be
computed numerically and compared with experiment is the
reversible magnetization. Here we compute the variation of the
reversible magnetization with the applied magnetic field and
temperature and compare with experiments. Figure 14 gives
the variation of reversible magnetization with temperature for
different magnetic inductions. As expected, lower magnetic
induction corresponds to lower magnitude of reversible
magnetization. Figure 15 shows the comparison of the
temperature dependence of reversible magnetization calculated
using the two-order-parameter model with the experimental
data for YBCO [48] for various applied field. The match
between the analytical and the experimental results is again
very good.

Reversible magnetization is an important quantity as it
can be used to determine the upper critical magnetic field
Hc2 of HTSs. The upper critical field Hc2(T ) is a difficult
quantity to determine due to large fluctuation effects in HTSs.
The upper critical field Hc2(T ) obtained from the resistivity
(R(T )) curves does not give an accurate result. Recently
there have been arguments in the literature [18, 49, 50] about
the origin of the observed unusual positive curvature in the
variation of upper critical field Hc2 with temperature. The
positive curvature has been interpreted by some authors as
evidence of the presence of multicomponent order parameters
in the system [18, 49]. On the other hand, the unusual
positive curvature of the Hc2(T ) curves derived from the

Figure 14. Variation of reversible magnetization (measured in the
units of Hc2) with temperature for different values of the magnetic
induction b = 0.005, 0.01, 0.03, 0.04, 0.05, respectively. Other
parameter values are the same as in figure 2 and εv = 0.1.

Figure 15. Comparison of theoretical temperature dependence of the
reversible magnetization (denoted by Hth) with the experimental data
for YBCO [48]. Parameters used for the theoretical calculations are
κ = 57, T/Ts = 0.5, εv = 0.1 and the other parameters are the same
as in figure 2.

results of the resistance measurements is attributed to the
misinterpretation of the resistance data [50]. It is therefore
very important to know the correct behavior of the Hc2(T )
plots. Hc2 obtained from the reversible magnetization gives
a more accurate result. However, this approach has not
been used so far, as earlier studies are limited to applied
magnetic field near Hc1 or Hc2. Since we can calculate
the reversible magnetization for arbitrary applied magnetic
field and as our method gives a numerically exact result, we
are able to obtain Hc2 very accurately from the computed
reversible magnetization data. We have computed Hc2 from
the analytically obtained reversible magnetization by defining
it as [50]

M(H, T ) = (1/4π)(Hc2(T )− H )/(2κ2 − 1)βA. (6)

Figure 16 shows the variation of the upper critical field Hc2

with temperature for different values of the coupling parameter
εv. It can be seen that the upper critical field Hc2(T ) increases
slightly (as shown in the inset of the figure) with increase
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Figure 16. Variation of Hc2 with temperature for different values of
the coupling parameter εv at T/Ts = 0.5. Other parameters are the
same as in figure 2 and b = 0.01.

Figure 17. Comparison of the theoretical temperature dependence of
the upper critical field Hc2(T ) (solid line) with the experimental data
(solid dots) for YBCO [50]. Parameters used for the theoretical
calculation are the same as in figure 2 with b = 0.075 and εv = 0.1.

of the coupling parameter εv. This is in agreement with
the earlier results that the increase of the coupling between
the order parameters enhances the upper critical magnetic
field Hc2(T ) [31]. The plot also shows a distinct upward
curvature, which can be a signature of the presence of
multicomponent behavior [18, 49]. Such behavior has been
observed experimentally for both LSCO and YBCO [51, 52].
Figure 17 shows the comparison of the upper critical field
Hc2(T ) calculated using our two-order-parameter GL model
with the experimental data of YBCO [50]. The match between
the theoretical and experimental results is fairly good.

3.4. Shear modulus (c66) of the vortex lattice

Calculation of the shear modulus (c66) is important for
determining the stability properties of the vortex lattice such
as the melting of the vortex lattice. Thermal fluctuations and
softening of the vortex lattice may melt the vortex lattice and
cause thermally activated depinning of the flux lines. Very
recently, the Lindenmann criterion of vortex lattice melting
has been formulated in terms of fluctuations of a single vortex
over a characteristic length termed the single vortex length, and
this length depends on the shear modulus (c66) of the vortex

Figure 18. Variation of shear modulus of the vortex lattice with
magnetic induction b for different values of coupling parameter εv.
Other parameters are the same as in figure 2.

lattice [53]. Experiments [54] have shown that the thermal
fluctuations near critical temperature in high Tc materials leads
to thermal depinning and entanglement of vortices, which in
turn leads to softening of the vortex lattice and finally its
melting.

We next compute the shear modulus of the vortex lattice
of high Tc superconductors in the mixed symmetry scenario.
For this, we determine the variation in the free energy density
with lattice parameter x2. We find that the free energy for
constant unit cell height y2 varies practically sinusoidally
with x2 for various values of the coupling parameter εv.
The shear modulus (c66) of this vortex lattice can thus be
determined by the difference in the free energy density between
a rectangular and an oblique flux line lattice and is given by the
relation [46]

c66 = 2π2[y2(εv)/x1]2 × [ f (x2 = 0, y2(εv))

− f (x2 = x1/2, y2(εv))] (7)

where y2(εv) denotes the value of unit cell height which
corresponds to the minimum free energy of the vortex lattice of
a given symmetry for a given value of the coupling parameter
εv. We have studied the behavior of the shear modulus with
change of the coupling parameter εv and the results are shown
in figure 18. The positive value of c66 suggests that the
particular symmetry of the vortex lattice considered is stable.
The plot looks qualitatively similar to that obtained for the
single order parameter GL theory [46]. However, the peak
position (bpeak) (the value of b for which c66 attains the peak
value) and the peak amplitude of c66 changes for the two-order-
parameter case considered here. The change in the value of
εv affects both the peak amplitude and peak position of the
shear modulus (c66) of the vortex lattice. The peak position and
the peak amplitude values of the shear modulus are important
quantities. While the peak amplitude determines the hardness
of the vortex lattice (stability of the vortex lattice), the peak
position (bpeak value) denotes the magnetic induction at the
peak value. Increasing the coupling parameter εv value results
in a decrease in the peak amplitude of c66 as shown in figure 19.
On the other hand, the value of the magnetic induction bpeak

corresponding to this peak amplitude (peak position) increases
with the increase in εv as shown in figure 20. The observations
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Figure 19. Variation of peak amplitude of c66 with different values of
coupling parameter εv. Other parameters are the same as in figure 2.

are consistent with our observation of variation of magnetic
penetration depth (λ), i.e. the width of the magnetic field
profile B(x, 0) with the coupling parameter εv. It is known
that 1/λ2 ≈ c66, thus an increase in the penetration depth
results in a decrease in the shear modulus (c66) of the vortex
lattice and vice versa. Since the increase in the coupling
parameter value εv results in an increase in the penetration
depth, it should decrease the shear modulus of the vortex
lattice and thus the peak amplitude of c66. Therefore, in
the mixed symmetry states of the HTS the vortex lattice gets
softened with increase of coupling parameter εv, and this favors
its melting. The increase in the bpeak value with increasing
coupling strength εv shows that for the HTS the vortex lattice
will melt at higher magnetic field. This is in agreement
with the vortex phase boundary as observed experimentally in
single crystal of YBa2Cu3O7−δ [54] and analytically in [53].
Figure 21 shows the plot of variation of the shear modulus
with temperature for different magnetic field. It can be clearly
seen that for a given value of b the shear modulus decreases
with increasing temperature. Also it shows that for a given
temperature the shear modulus decreases with increasing b.
This implies that the melting of the vortex lattice is favored at
higher temperature and also higher magnetic field. This agrees
with the experimentally observed phase diagram of the vortex
phase [54] and also the analytically obtained phase diagram for
thermal melting of the vortex solid into the vortex liquid [53].

4. Conclusions

We have presented a detailed study of the properties of high
temperature superconductors in states of mixed symmetry,
focusing on the effects arising from s–d mixing. We have used
a numerically exact method which is valid for the arbitrary
applied magnetic field, GL parameter κ and vortex lattice
symmetry. We have not used any ansatz for the form of
the order parameters. We have obtained the structure of the
single vortex and vortex lattices, width and amplitude of the
order parameters and the induced magnetic field and their
variations with the applied field and the coupling parameter
εv representing the strength of the gradient coupling between
the order parameters. We have for the first time calculated

Figure 20. Variation of peak position of c66 with coupling parameter
εv. Other parameters are the same as in figure 2.

Figure 21. Variation of c66 with temperature for different values of
magnetic induction b and coupling parameter εv = 0.1. Other
parameters are the same as in figure 2.

theoretically and compared with experiments several other
properties of the HTSs in states of mixed symmetry, such
as the temperature and applied magnetic field dependence
of the vortex core radius, reversible magnetization and shear
modulus of the vortex lattice and its relation to vortex
lattice melting and also the variation of the penetration
depth and upper critical magnetic field Hc2 with temperature.
From the fact that these properties are the signatures of
the superconductivity phenomena and from the excellent
agreement between the theoretical and experimental results,
we make an important conclusion that the mixed symmetry
scenario is a good candidate for the description of the high
temperature superconductors.

However, we would like to mention that in the present
work we have not considered the effects of anisotropy,
thermodynamic fluctuation and hole concentration on the
properties of HTSs. For a single order parameter GL
theory we have recently shown how to take effects of
anisotropy into account [55]. Similarly, Ginzburg [56] has
suggested generalization of single-order-parameter GL theory
by including a higher order term (ψ6 term) in the GL free
energy and making the coefficients of both the ψ2 and ψ4

terms temperature dependent, in order to take into account
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the effect of thermodynamic fluctuations in high temperature
superconductors. It is possible to extend these calculations
for the two-order-parameter GL theory as considered here.
However, similar calculations for the mixed symmetry scenario
are very complex and are beyond the scope of the present paper.
The effect of different hole concentrations can be taken into
account by scaling the GL parameter κ by the inverse mean free
path l. Such a scaled value of κ for a given hole concentration
in YBa2Cu3O7−δ is provided in [57].

Similar calculations may be useful to describe the
properties of other multicomponent superconductors such as
the heavy fermion superconductor UPt3 [24]. The recently
discovered superconducting material MgB2 [58] has also
revealed the presence of a multicomponent order parameter.

Acknowledgments

The authors would like to thank E H Brandt for help with the
numerics. The authors would also like to thank University of
Pune, Pune, India, for financial assistance through a BCUD
research grant.

References

[1] Barret S E, Martindale J A, Durand D J, Pennington C H,
Slichter C P, Friedmann T A, Rice J P and Ginsberg D M
1991 Phys. Rev. Lett. 66 108

Martindale J A, Barrett S E, O’Hara K E, Slichter C P,
Lee W C and Ginsberg D M 1993 Phys. Rev. B 47 9155

[2] Wollman D A, Van Harlingen D J, Giapintzakis J and
Ginsberg D M 1995 Phys. Rev. Lett. 74 797

[3] Iguchi I and Wen Z 1994 Phys. Rev. B 49 12388
[4] Tsuei C C, Kirtley J R, Chi C C, Lock See Y-J, Gupta A,

Shaw T, Sun J Z and Ketchen M B 1994 Phys. Rev. Lett.
73 593

[5] Mathai A, Gim Y, Black R, Amar A and Wellstood F C 1995
Phys. Rev. Lett. 74 4523

[6] Devereaux T P, Einzel D, Stadlober B, Hackl R, Leach D H and
Neumeier J J 1994 Phys. Rev. Lett. 72 396

Devereaux T P and Einzel D 1995 Phys. Rev. B 51 16336
[7] Hazen R M 1991 Physical Properties of High Temperature

Superconductors II ed D M Ginsberg (Singapore: World
Scientific)

[8] Li Q P, Koltenbah B E C and Joynt R 1993 Phys. Rev. B 48 437
O’Donovon C and Carbotte J P 1995 Phys. Rev. B 52 16208
Beal-Monod M T and Maki K 1996 Physica C 265 309

[9] Heyen E T, Cardona M, Karpinski J, Kaldis E and
Rusiecki S 1991 Phys. Rev. B 43 12958

[10] Limonov M F, Rykov A I, Tajima S and Yamanaka A 1998
Phys. Rev. Lett. 80 825

[11] Lu D H, Feng D L, Armitage N P, Shen K M, Damascelli A,
Kim C, Ronning F, Shen Z X, Bonn D A, Liang R,
Hardy W N, Rykov A I and Tajima S 2001 Phys. Rev. Lett.
86 4370

[12] Miller J H Jr, Ying Q Y, Zou Z G, Fan N Q, Xu J H,
Davis M F and Wolfe J C 1995 Phys. Rev. Lett. 74 2347

[13] Ma J, Quitmann C, Kelley R J, Berger H, Margaritondo G and
Onellion M 1995 Science 267 862

[14] Sun A G, Gajewski D A, Maple M B and Dynes R C 1994
Phys. Rev. Lett. 72 2267

Chaudhari P et al 1988 Phys. Rev. Lett. 60 1653
[15] Aubin H, Behnia K, Ribault M, Gagnon R and Taillefer L 1997

Phys. Rev. Lett. 78 2624

[16] Smilde H J H, Golubov A A, Arindo Rjinders G, Dekkers J M,
Harkema S, Blank D H A, Roqalla H and
Hilqenkamo H 2005 Phys. Rev. Lett. 95 257001

[17] Annett J, Goldenfeld N and Legget A J 1996 Physical
Properties of High Temperature Superconductors vol 5,
ed D M Ginsberg (Singapore: World Scientific)

[18] Joynt R 1990 Phys. Rev. B 41 4271
[19] Chakravarty S, Laughlin R B, Morr D K and Nayak C 2001

Phys. Rev. B 63 094503
[20] Beal-Monod M T and Maki K 1996 Europhys. Lett. 33 309
[21] Curras S R, Ferro G, Gonzalez M T, Ramallo M V, Ruibal M,

Veira J A, Wagner P and Vidal F 2003 Phys. Rev. B
68 094501

Ramallo M V, Pomar A and Vidal F 1996 Phys. Rev. B 54 4341
[22] Keimer B, Shih W Y, Erwin R W, Lynn J W, Dogan F and

Aksay I A 1994 Phys. Rev. Lett. 73 3459
Maggio-Aprile I, Renner Ch, Erb A, Walker E and

Fischer Ø 1995 Phys. Rev. Lett. 75 2754
[23] Affleck I, Franz M and Amin M H S 1997 Phys. Rev. B

55 R704
[24] Joynt R 1997 Phys. Rev. Lett. 78 3189
[25] Fisk Z, Hess D, Pethick C, Pines D, Smith J, Thompson J and

Willis J 1988 Science 239 33
[26] Volovik G E 1993 Pis. Zh. Éksp. Teor. Fiz. 58 457
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